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Abstract - This paper presents the repetitive analysis of 

circuits containing elements described by distributed 

parameters, such as transmission lines. The time do-

main repetitive analysis is performed with  the utilisa-

tion of a polynomial number method and symbolic for-

mulas, and is fast enough to show animated graphs of 

circuit response according to change of some parame-

ters of the circuit. 

1. INTRODUCTION 

The repetitive time domain analysis it is a calculation 

of the response function of the circuit, for example 

step response, while we change some parameters of 

the circuit many times. A way to achieve a high speed 

of this type of calculation is to determine the response 

function as the numerical and symbolic formula, 

where the numerical coefficients depend on the circuit 

topology and the value of the fixed (non-symbolic) 

parameters while only variables are the symbolic 

parameters [1]. To describe the response function as 

the numerical and symbolic expression the operational 

calculus can be used ([2], [3], [4]) and a polynomial 

number method ([5], [6]) can be utilised (table 1).  

 

Type of 

signal 

Equivalent 

number 

Computer 

implementation 

DC real number real number (N bits) 

AC complex number 2 real numbers 

transient 
polynomial 

number 

M real numbers and 

integer number 

Table 1. Signals and numbers 

It is important that the polynomial number method 

can be used not only for the lumped circuits. Also the 

elements modelled using the distributed parameters 

can be taken into account. 

2. TRANSMISSION LINE MODEL 

Starting from differential equations of voltages and 

currents (fig. 1)  
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where u(x), i(x) are operators of time domain func-

tions and, according to denotation entered by Mikus-

inski in [7] and [8], they can be written as: 

 u(x) = {u(x, t)}, i(x) = {i(x, t)} . (2) 

Z', Y' are transmission line parameters per unit length 

and are functions of Heaviside’s operator 
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Fig. 1. Transmission line voltages and currents. 

In a simple case Z' = R' + pL', Y' = G' + pC', but there 

are more complicated cases when Z', Y' are described 

by Bessel functions [10] and then series of p , as in 

[9] should be considered. 

Connections between the near-end and far-end volt-

ages and currents can be expressed by equations: 
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where '/' ZYYc = , ''ZY=γ . The equivalent cir-

cuit diagram corresponding to these equations is 

shown in fig. 2. 
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Fig. 2. Transmission line model. 

The controlled current sources in the transmission 

line model contain such coefficients as le γ−  or l
ceY

γ−  

which are complicated functions of Heaviside’s opera-

tor, due to square roots and exponential functions. All 

these functions can be calculated using the polynomial 

number algorithms [5], because basic operations +, -

, /, *, as well as functions such as: rising to any ra-

tional power, exp(), ln(), sin(), cos() can be calculated 

in polynomial number domain.  

3. Z-TRANSFORM AND EXPONENTIAL 

FUNCTION 

Fast calculation of numerical-symbolic formulas 

forces to use Z-transform in a polynomial number 

calculator ([11], [5], [1]). The Heaviside’s operator p 

(3) can be approximated by a polynomial number p, 

for example in trapez rule case: 

 
)1,1(

)1,1(2
~~~

~~~ −
=
h

p  (5) 

where h is the sampling period. As it was shown in 

[5], the exponential function with an argument, which 

is a complicated function of p can be calculated more 

accurate when "pure" delay operator is separated from 

the argument. For example, calculation of function  
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can be more accurate when pure delay operator  

exp(- Tsh p) is separated. This delay operator can be 

accurately expressed in Z transform, because it corre-

sponds to the shift of the sequence, so series of sam-

ples satisfies formula: 
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 where 
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N

sh  ,   - integer part of the number. 

As it is illustrated in fig. 3, too small delay Tsh causes 

too small accuracy (it can be noticed, that sample 

period h=0.3 is relatively high, nevertheless samples 

are close to f(t) ).  
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Fig. 3. Inverse Laplace transform ( 

 
 ) and Z 

transform samples (  , sampling period h=0.3 ) 

with different pure delay operator Tsh . 

b) 

a) 

c) 
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Too high delay causes strange effect, as in fig. 3d, so 

it is very important to set a proper value of Tsh time. 

But in a general case delay values are hidden in the 

arguments of the exponential functions, so an addi-

tional algorithm should be used to determine delay 

value. The idea is based on multiply calculations of 

exp() function – precalculation should be used to 

determine optimal delay time Tsh. Iterations should 

start from Tsh=0 (fig. 3a), and Tsh for next iteration 

can be determined, as the time when the samples 

differ from zero (fig. 3b). Next iterations should con-

tinue with higher Tsh until samples becomes unrealis-

tic (very high absolute values – see fig. 3d). 

The strange values of the Z-transform PN-digits in 

fig. 3d are not an illustration of the numerical insta-

bility, but are correct values correspond to eq. (7). 

This polynomial number acts as operator, with "nega-

tive delay" that means, when it will be multiply with 

another polynomial number containing "positive de-

lay" operator it will give real samples in the result 

(see remarks of Mikusinski in [8] on page 135). The 

series of the samples correspond to operator do not 

approximate any function y(t) – when sampling pe-

riod is changed then new samples are quite different 

from previous series. An example for a dependence of 

the Heaviside’s operator samples and sampling period 

h is shown in the fig. 4. Similar property concerns the 

samples of operator with "negative delay" in fig. 3d. 
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Fig. 4. Different Heaviside’s operator samples (5) 

with different sampling period values. 

4. NUMERICAL EXAMPLE 

An example of utilizing transmission line model 

shows the transient repetitive analysis with symbolic 

elements in RAN5 program (Repetitive Analysis of 

Networks). Output voltage in a circuit in fig. 5 can be 

derived from formula (4) (all symbols in the formula 

(8) except l and k are functions of p): 
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Fig. 5. Linear circuit with transmission line. 

The polynomial number u2 with digits equal approxi-

mately to samples of u2(t) is calculated in program 

RAN5 (fig. 6) using u2(p) from (8) with p as in (5): 
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where )...11,5.0()(
~~~~~

00 ⋅⋅= ppuu  is the polyno-

mial number with digits equal to u0(t) samples. Even 

for all parameters of the circuit and all parameters of 

transmission line treated as symbols this calculation is 

fast enough to show animated graphs for u2(t). 128 

samples are calculated in time 1.8ms using computer 

PC with Pentium 1.7GHz. 

5. CONCLUSIONS 

The polynomial number method refers to the com-

puter implementation of some operational calculi and 

is useful in the transient repetitive analysis, where the 

pre-generated numerical-symbolic formulas should be 

used. A range of utilisation of this method incorpo-

rates systems with elements described by the distrib-

uted parameters. 
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Note:  

Full text versions of some mentioned above papers are 

available at http://www.pei.prz.rzeszow.pl/~kubaszek 

 

Fig. 6. RAN5 – Repetitive Analysis of Networks with transmission lines 
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