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Abstract:

The paper concerns a computer-aided analysis of signal waveforms in interconnection lines. Due to the skin effect
and the proximity effect, the resistance and inductance per unit length are frequency dependent. The Laplace transform
of the voltage wave U(s) in such a line is a complicated function of s. For a time domain analysis the polynomial number
method is proposed. We treat the polynomial numbers (PN) as a generalisation of the ordinary numbers of the decimal,
binary etc. system. The PN rules of arithmetic operation, e.g. the floating-point arithmetic are simple and easy to the
computer implementation.

1. INTRODUCTION

 We observe different parasitic phenomena in interconnection media under high speed switching condition, in
transmission line systems at high frequency operation etc. [1][8]. The skin and proximity effects are one of them and
have influence on the waveform. The per unit-length impedance of a line depends strongly on frequency and causes
impedance mismatches. We have examined and compared the results for a two-conductor cable and a concentric cable
with series parameters to be independent of frequency CLRZC ωω j/)j( +=  and to be frequency dependent

CfLfRZC ωω j/))(j)(( += . Frequently the suitable relations are expressed by the Bessel functions. For transient
analysis we take the Laplace transforms of line voltages and currents. The suitable impedance per of unit-length is the
function of the complex variable s. For example, for a two-conductor cable the distributed series impedance can be
expressed as follows
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  where
        k = sµσ
        µ , σ - permeability and conductivity,
        a - radius of conductors,
        d - distance between the conductors,
        In( ) - modified Bessel function of the first kind,

       L = 
a

ad −ln
π
µ .

The proximity effect influence on the external inductance is neglected. For a concentric cable we have:
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   where
        a - radius of internal conductors,
        b - internal radius of external conductors,
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        Kn( ) - modified Bessel function of the second kind,

       L =
a
bln

2π
µ .

As we know the Laplace transform of voltage  in  the  cable (Fig.1) can be expressed by the travelling wave form:
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  where
        l - line length
 
        Z - series impedance per unit length
 
        Y - shunt admittance per unit length
 
       YZZ /C = , ZY=γ , 
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         We assume Y = sC .

Fig. 1.

Characteristic parameters ZC and γ as well as the reflection coefficients q1, q2 are functions of the impedance Z from eq.
(1).

 For the time-domain analysis we have to take the inverse Laplace transformation of eq. (2). This procedure is very
difficult because of the complicated form of the transform.

2. THE POLYNOMIAL NUMBER METHOD

For such a kind of problems we elaborate a computer method denominated "the polynomial number method". The
polynomial numbers (for convenience we will call PN) we treat as a generalisation of the ordinary numbers of decimal
system. The PN system can also represent a large class of other positional number systems. The PN are defined as a set
which is described by a sequence of elements an belonging to an arbitrary field with one sequence position to be pointed
out (exactly PN are pairs ({an}, N) of sequences {an} and natural numbers N ). The PN we denote by

 a = ( a-N ~a-N+1
~...~a-1

~a0
~, a1

~a2
~...) , (3)

   N - natural number.

The PN method refers to the approach of numerical operators described by Bellert [2]. In eq. (3) an is a digit of PN and
represents a traditional rational or complex number. The point marks the pointed out position (a0

~,) - it is a radix point in
positional number systems. It may be neglected, if a1, a2,...= 0. The sign "~" serves to separation of the PN digits. If the
digits an are also polynomial numbers then a is a polynomial number of the second order (2PN).

 The PN can be expressed in different equivalent forms:
   a = ∑

∞

−= Nn
an ( 1

~0~)-n  =                                           (4)

   = ( a-N
~, a-N+1

~ a-N+2
~...)( 1~0~)N =                           (5)

   = ( a-N
~ a-N+1

~, a-N+2
~...)( 1~0~)N-1

   The form of eq.(4) corresponds to a power series with p as a base i.e.

(a)p= ∑
∞

−= Nn
an p

-n = a-N p
N + a-N+1 p

N-1+ ...+a-1 p + a0+ a1 p
-1+...=    = (a-N ~a-N+1

~...~a-1
~a0

~, a1
~...~)p (6)
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If p = r = 2 or 8 etc. and an = 0, 1, ..., r-1 we obtain the binary or octal etc. number system. If p = 10, an = 0, ..., 9 we
notice a familiar rational number written in the positional decimal number system (eq.(6)). Then the separating signs and
the radix are needless. Since p = 1p + 0 then in the PN notation there is p=( 1~0~)p. Hence eqs. (4) and (6) are
equivalent.

 Eq.(5) shows that the factor ( 1~0~) serves a role of the point shift operator. The variable p (or radix r) does not
participate in any further arithmetic operations and is replaced by the PN factor ( 1~0~). The PN in a form of eq.(5)
corresponds to the floating point arithmetic of rational numbers [1]. The PN rules of arithmetic operations are simple
and easy to the computer implementation [4].

3. THE PN AND THE INVERSE LAPLACE TRANSFORMATION

 A large class of LLLL    -transforms which consists of rational functions or/and functions having their asymptotic
expansions (e. g. Bessel functions) are possible to express as a PN. Eq.(2) belongs to such a class of functions.

 After obtaining F(s) in a form of the PN, we take the inverse LLLL    -transformation to get the time domain solution.
There are two approaches. First of them is connected with the inverse transformation of series [9]

f(t) = L L L L 
-1{ ∑

∞

=0n
an (s

1/ν)-n }  , ν = 1, 2, ... (7)

In that case we make a replacement s = ( 1~ 0~)ν for all components of the function F(s). For further calculation in
transform domain we use computer aided PN arithmetic. That causes all results -as well final result- are isomorphous
with series (7).

 
 The second one uses the analogy between the PN and the ZZZZ    -transform of f(t) [5]. This approach requires the

replacement of s by constant polynomial number p. The constant p is connected with numerical algorithm of
differentiation. For example

....)2222,1(2
)11(
)11(2 ~~~~~

~~

~~
−−=−=

hh
p

in the case of the trapezoidal rule. All PN which are ZZZZ    -transforms of signals have got digits equal to samples of these
signals in succeeding time steps h - as well ZZZZ    -transform of final result. We will not develop this problem now.

A brief explanation of the operation L L L L 
−1

{U(x,s)} is necessary since the first approach was applied. In eq.(2) there are
functions like exp(-γ l ). Because of the form of Bessel function argument, which we find in γ, it is useful to take series
(7) with ν=2 for our calculating procedure. In this case s = (1~0~0) and s = (1~0~). As the final result for U(x,s) in the
PN field we get a sum of terms like

A = f exp(-γ α) (8)

where f is PN which corresponds with any f(t) function (i.e. we can calculate inverse transform of f ), α is real number.
But we cannot compute exp(-γ α). For example series

∑
∞

=0n
 (-γ α)n / n! (9)

is not convergent in the PN space. We have to split argument of exp function ([7] pp.56-58)

  -γ α = -(γ-2
~γ-1

~γ0
~,γ1

~γ2
~...~) α = 

    = -γ-2α s - γ-1α s - (γ0
~,γ1

~γ2
~...~)α 

where s = ( 1~0~0~) , s = ( 1~0~). Let

  τ = γ-2α , β = γ-1α , g = (γ0
~,γ1

~γ2
~...~)α .

Now term A (8) assumes a form
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A = e-τ s e-β s  e-g f (10)

Function e-τ s represents the known translation operator. There is possible to calculate e-g (series Σ (-g)n / n! is
convergent), therefore we obtain PN F = e-g f . (For calculate PN exponential function we have far faster algorithm then

mentioned series [6]). The only one problem is inverse transformation Φ(t) = L L L L 
-1{ e-β s F}. After obtaining Φ(t) we

have A(t) = Φ(t-τ).
F is in form

F = ( 0~, F1
~F2

~F3
~...) = F1 s -1 + F2 s -2 + F3 s -3 + ...

(digits F0, F-1, F-2... of PN F before radix point are equal to zero because digits of E1 before radix point are equal to
zero). Thus

Φ(t) = L L L L 
-1{
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Series (11) we obtain for ν=2 in (7). In simple case of z(s) e.g. z(s)=sL+R, where L, R are frequency independent, we can
take ν=1. In this case we obtain Taylor series instead of series (11).

4. NUMERICAL RESULTS

In this way we have found the signal waveform at the output end of the lines (U2) as well as the reflected wave (U2
-).

In all figures the solid lines show the waveforms in the frequency dependent parameter. The dashed lines are obtained at
the assumption that the parameters are frequency independent.

For the two-conductor line "o--o" we assume a = 0.45 mm, d = 7.8 mm, ε = 1.25 ε0, σ = 56 106 S/m, µ = µ0; Z2 = R2

= CL / = 299.8 Ω, (L = 1.1176 µH/m, C = 12,431 pF/m, R = 50 mΩ/m).
  For the concentric line "(o)" we assume a = 1.0 mm, b = 3.55 mm, ε  = 2.25 ε0, σ = 56 106 S/m, µ = µ0; Z2 = R2

= CL / = 101.36 Ω, (L = 0.50678 µH/m, C = 49.331 pF/m, R = 5,06 mΩ/m).
 In the both cases we take Z1 = 0, e1 = 1(t) - 1(t-t0), t0 < LC  = τ, t0 = 0,1τ.
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Fig.2. Output voltage waveforms. t0 = 0.1 τ 
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Fig.3. Output voltage waveforms. t0=0.1 τ 
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Fig.4. Reflected waves at output-end. t0=0.1 τ
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Fig.5. Reflected waves at output-end. t0=0.1 τ 
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Fig.6. Reflected waves coming back to the
output-end. t0=0.1 τ 
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Fig.7. Reflected waves coming back to the
output-end. t0=0.1 τ 
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Fig.8. Output voltage waveforms. t0=0.001 τ 
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Fig.9. Output voltage waveforms. t0=0.001 τ 

5. FINAL REMARKS

The skin and proximity effects have considerable influence on the waveform, particularly for wide spectrum signals.
If the source E1 generates the pulse-sequence, then arisen reflected waves superpose giving some level of noise. The
intensity of these effects is greater in the two-conductor lines. The PN method is very effective in such an investigation.

The accuracy of results depends on three factors. The influence has the mathematical model error, the PN method
error and the round-off error. The PN method error is connected with the PN truncation during the computation
procedure and we can estimate it influence on final results.
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